IR Fotografie

Da ich ja ein „offene“ Digitalkamera verwende für Astrofotografie, hab ich mir mal zwei günstige IR Filter besorgt.  Ein IR760 und ein IR850 von Fotga.  Wie das Fotometer zeigte, öffnen sie komplett ab der angegebene Wellenlänge mit 90% Durchsicht:

IR_760-850

Eingezeichnet ist auch der Bereich, wo normalerweise eine Digitalkamera auf das sichtbare Licht empfindlich ist. Da wir Infrarot nicht sehen können, sind diese Filter für uns undurchsichtig. Manche Tieraugen können dieses Licht aber sehen. Ihnen würde Blattgrün weiß erscheinen, weil es das IR Licht stark reflektiert. IR Strahlung durchdringt Nebel auch recht gut.

Hier mal ein erster Versuch: Jeweils Original, umgewandelt in s/w und durch die zwei Filter IR760 und IR850nm

Dürnstein in der Wachau

normal (E-M5, mFT 75/1.8 F4 1/2500s

Dürnstein in der Wachau

normal – als schwarz/weiß (E-M5, mFT 75/1.8 F4 1/2500s

Dürnstein in der Wachau

IR ab 760nm (E-PL6mod, mFT 75/1.8 F4 1/400s

Dürnstein in der Wachau

IR ab 850nm (E-PL6mod, mFT 75/1.8 F4 1/320s

Burgruine Dürnstein in der Wachau

normal (E-M5, mFT 75/1.8 F4 1/1600s

Burgruine Dürnstein in der Wachau

normal – als schwarz/weiß (E-M5, mFT 75/1.8 F4 1/1600s

Burgruine Dürnstein in der Wachau

IR ab 760nm (E-PL6mod, mFT 75/1.8 F4 1/200s

Burgruine Dürnstein in der Wachau

IR ab 850nm (E-PL6mod, mFT 75/1.8 F4 1/125s

Der Autofokus funktionierte recht gut, die Bilder direkt aus der Kamera waren alle Rot. Denn es werden ja nur die Sensoren über denen der Rotfilter liegt angesprochen. Das sind 1/4 der verfügbaren, weil ja die anderen Sensoren mit je 2x Grün und 1x Blaufilter bestückt sind (Bayer Matrix).

Für ernsthafte IR Fotografie müsste man also einen schwarz/weiß Sensor verwenden, oder die vorgesetzten Filterchen abkratzen. Dabei werden aber auch die vorgesetzten Mikrolinsen entfernt, was die Empfindlichkeit senkt.

 

Olympus mFT75 1.8

Mein „1st Light“, leider zu kurz mit dem ED 75 / 1.8

160114 EPL6 + ED75/1.8

Die nächste Schlechtwetterfront schickte bereits hohe dünne Wolken, sodass es nur für ein paar Probefotos mit kurzer Belichtungszeit reichte.

Das ED 75/1.8 ist  das schärfste Objektiv, das für mFT Kameras (derzeit Olympus und Panasonic) zu haben ist. Wer noch in Kleinbildformaten wie z.b. Dia denkt: Es wäre ein Objektiv mit 150mm Brennweite bei einer Blende ab 1.8!

An herkömmlichen großen Sensoren würde ein Objektiv mit solchen Daten aufgrund der extrem großen perfekten Linsen mehrere Kilo wiegen und daher unfinanzierbar sein, daher gibt es nur  lichtschwächere vergleichbare Objektive. Gerade da spielen die Möglichkeiten des mFT Systems die Stärken voll aus. Durch die möglich gewordene Kompaktheit sinkt Gewicht und Preis enorm, so ist es eben möglich, eine solch kompromisslose Optik zu bauen, die auch einen breiteren Markt hat. Allerbestes optisches Glas ist einfach extrem teuer und sehr schwer herzustellen. Daher auch der Preisunterschied zu günstigeren Konsumerlinsen. Kleinere Linsendurchmesser (=größere Blende) steigern den Bereich der Schärfe (Schärfentiefe), gleichzeitig sinkt aber auch die Lichtmenge die auf den Sensor fällt: 1 Blende weniger (zb. F2.8 auf F2.0) bedeutet doppelt so viel Licht, entsprechend groß muss die Linse werden.

Hier also das erste Bild:

160114 Satellit und M45

Es zeigt die Plejaden (Siebengestirn) im Sternbild Stier, am Wintersternhimmel eine sehr auffälliges Objekt. Ein taumelnder oder rotierender Satellit ist auch durchgeflogen, durch reflektierende Teile leuchtet er immer wieder heller auf.

Belichtungszeit: 60sec ISO:800 F1.8 an meiner modifizierten E-PL6. Ein UV/IR Sperrfilter (Haida Pro II MC Digital Slim UV/IR 390-750nm) war auch am Objektiv, um langwelligeres IR Licht wegzuschneiden, die Kamera wurde ja modifiziert.

 

Filter – IRUV

Ich hab mir jetzt eine Olympus E-PL6 durch IRreCam modifizieren lassen. In Ermangelung von Astrofiltern zum FT Sensor wurde dabei das Kamerasperrfilter gegen ein Glasfilter das ab 280nm alles durchlässt, ersetzt. Damit hat die Kamera jetzt auch volle Sensibilität für H-alpha und S-II (650-700nm) leider aber auch darüber hinaus. Die IR Wellenlängen habe ja einen anderen Fokuspunkt, es würde also unscharfes IR Licht die Bilder verfälschen. Daher habe ich mir auch einen UV/IR block Filter besorgt, der das IR über 700nm zuverlässig blockiert:

IRUVcut

sehr schön sieht man dass er unterhalb 400nm (UV) und ober 700nm (IR) sperrt. Damit habe ich also dann eine „Astromodifizierte“ Kamera.

Natürlich kann man diese Kamera dann mit entsprechenden IR-Filtern für die „normale“ IR Fotografie einsetzen.

Für Fotooptiken bin ich in Sachen UVIRCut Filter beim Haida inform der
„Haida Pro II MC Digital Slim UV/IR390/750“ Filter fündig geworden.
Sie funktionieren sehr zufriedenstellend und sind relativ günstig.
Hier die Durchlässigkeitskurve (inkl. die der IR760 und IR850 Filter)

Haida UVIRcut und IR Filter

Filter – CLS

Um die Störstrahlung am nächtlichen Himmel zu unterdrücken, dennoch aber die wichtigen Spektrallinien der Himmelsobjekte zu erhalten, hab ich mir einen Astronomik CLS Filter besorgt.

Ich habe den Filter jetzt mal ausgemessen:
Spektrale Durchlässigkeit
Die Lichtverschmutzung durch Quecksilber und Natriumdampflampen liegt hauptsächlich zwischen 550 und 630nm. Wie man sieht blockiert es da komplett.
Durch den Umstieg auf  LED Beleuchtung, die ganz andere Spektrallinien aufweisen wird das wohl ein spannendes Thema werden.

Was man noch schön sieht: Wer einen Sensor verwendet, der keinen IR Sperrfilter hat wie eine normal Digitalkamera, muss zusätzlich einen solchen Sperrfilter verwenden, denn ab 800nm ist er relativ gut durchlässig.  Es gibt aber einen CLS Filter speziell für CCD Kameras die außerdem IR blockieren.

Einige interessante Spektrallinien der Himmelsobjekte sind:

O-III:  496 und 501 nm (zweifach ionisierter Sauerstoff)
H-α: 656 nm (α-Linie des Wasserstoff)
H-β: 486 nm (β-Linie des Wasserstoff)
S-II: 672 nm (einfach ionisierter Schwefel)
N-II: 658 nm (einfach ionisierter Stickstoff)

Ich bin schon gespannt, wie er sich praktisch an meinen Fotoapparaten schlägt.