Verzerrungen / Distortion

Wer in der Astrofotografie mal dahin gekommen ist, seinen Bilder zu Stacken und/oder zu einem Panorama zusammenzufügen wird schnell erkennen dass die Bilder je nach eingesetzter Optik verzerrt sein können.

Je weitwinkeliger und günstiger die Optik, je größer das Problem.

Gerade bei den kleinen, weit winkeligen  mFT Optiken gibt es das Problem. Dem tritt man entgegen, indem man das Bild elektronisch korrigiert und das Ergebnis in ein JPG „out of Camera = OOC“ Bild schreibt.
Auch Olympus Workspace kennt natürlich seine Optiken und kann aus einem RAW  (ORF) daraus ein korrigiertes JPG Bild erzeugen.  Das entschärft die Situation, zumindest für den Alltagsgebrauch.

Wer allerdings so wie ich seine Astrofotos zunächst aus dem RAW ungestreckt (linear) bearbeitet hat, hat keine korrigierten Bilder zur Verfügung,

Spätestens bei der Astrometrierung (Analyse des Bildfeldes und hinterlegen, der Koordinaten) kommt es entweder zu einer Abbruch, oder im Erfolgsfall zu beträchtlichen Abweichungen: Die Sterne gegen den Rand werden falsch eingezeichnet.
Damit fällt natürlich eine Photometrische Farbkalibrierung (anhand wissenschaftlicher Sternkatalogen) seiner Bilder flach. Ein essentieller Schritt um einigermaßen belastbare Farben in seinen Deep Sky Bildern bekommen zu können.

Bei starken Weitwinkel kommt man zum Glück üblicherweise mit einer Belichtungsserie durch.  Da man da mit einer Nachführung den Sternen folgt, bleiben, zumindest solange man nichts verstellt, die Sterne am selben Ort am Foto. Ohne Nachführung wird aber durch unterschiedlicher Verzerrung der Optik, je nachdem wo im Bildfeld der Stern steht, ein Stacken hinterher schwierig bis unmöglich.

Bei der Astrometrierung kann man sich eine Bild der Verzerrung seiner Optik ausgeben lassen. Das zeigt den Unterschied zwischen der exakten Postion in Sternkatalogen und seinem eigenem Bild.

Gerade das Olympus mFT12/2 bietet hier einen geradezu psychedelischen Anblick:

mFT12/2 @ F2,8

Defishing; Wenn das Runde ins Eckige muss

Bekomme ich mittlerweile eine Astrometrische Lösung für das mFT12/2, ist es mir mit dem mFT8/1.8 nicht geglückt. Ist aber auch etwas sinnlos….

Das mFT8/1.8 bietet sich natürlich an, extreme Widefields zu machen. Damit werden natürlich auch die Nachteile bei weiten Feldern potenziert: Riesige Helligkeitsunterschiede und man bekommt sehr schnell störendes ins Bild.

Hier mal ein Bild der Sommer Milchstraße mit dem Olympus mFT8/1.8:

 

190929 Milchstraße 8mm

Das gesamte Feld des 8mm (allerdings auf 66% verkleinert) gibt es auf AstroBin

Links die sehr helle Spur war die ISS und Rechts ein Flair eines Satelliten.
Im unteren Drittel links erkennt man die Andromeda Galaxie (M31) links oberhalb der Flugzeugspur – hier einfach herausgeschnitten:

190929 Milchstraße 8mm Crop M31

Im Gegensatz zu den mFT7/14 Optiken, wo naturgemäß durch die Korrektur der Rand  bei 7mm stark verzerrte wird, bildet das Fischauge mFT8/1.8 auch gegen den Rand hin gut ab.

Wer jetzt an ein defishen denkt:

190929 Milchstraße 8mm defish

Bei punktförmigen Lichtquellen wie Sterne es sind, sieht man es halt extrem, wie sie in die Länge gezogen werden.

Beim Herauszuschneiden wird der nutzbare ebene Bereich dann schon recht klein.

Mir ist aber auch klar, dass es hier ein spezifisches Problem.
Nehme ich jetzt mein 7-14 dann ist natürlich der Rand auch mit entsprechend bekanntem Problem behaftet. Selbst beim 12mm sind natürlich die Koma gegen den Rand unschwer zu ignorieren. Aber das ist halt so, geht ja nicht anders.
Dafür sind natürlich die Sternchen gegen den Rand des 8mm Bildfeldes so gut wie sonst nie.

Dass es so sein wird, habe ich aber vor Kauf geahnt 🙂

Bei anderen Bilder kann man natürlich die Korrekturen wesentlich schwächer durchführen lassen, soviel wie man halt braucht.
Solange man keine wirklichen Anhaltspunkte hat und etwas vermessen will, passt es 🙂

 

 

 

 

 

 

 

Dem Orion Nebel ins Zentrum geblickt

Wer schon mal ohne Hilfsmittel versucht hat, den Orion Nebel zu sehen, der kann an dunklerem Himmel unterhalb der 3 Gürtelsterne das sogenannte Schwertgehänge und kann da ein schwaches „Sternchen“ (mag +4,5) entdecken.
Wer ein Fernglas oder Teleobjektiv zur Hand nimmt, der wird 4 Sterne erkennen. Die sogenannten Trapez Sterne (wegen der Anordnung).

Sie laufen unter dem Namen Theta1 Orionis = θ1 Ori
Theta2 ist der Erste der hellen 3 Sterne links hinter der Schockfront.

Zum Trapez: Von den 4 Sternen Theta1 C / A / B / E ist optisch schon leicht erkennbar C am hellsten. Mit 40 Sonnenmassen ist er ein sehr massereicher Stern und mit 50.000 Grad sehr heiß. Sogar der heißeste Stern, den wir mit freiem Auge sehen können. Er leuchtet 200.000 fach heller als unsere Sonne. Seine großteils harte UV-Strahlung regt das Gas des Orion zum Leuchten an. Ohne ihn würde wir hier kaum etwas sehen.
Das rote Licht ist wie immer der Wasserstoff, Sauerstoff in Blau ist kaum vorhanden, sondern kommt vom reflektiertem Sternenlicht (Reflexionsnebel).

Die Sterne des Trapez sind vor 1 – 2,5 Mio. Jahren aus der Gaswolke entstanden und füllen hier in etwa einen Raum von der Größe unseres Sonnensystems. Es sind nicht nur 4 Sterne, sondern sehr komplizierte Mehrfachsternsysteme. Selbst auf diesem 13 Sekunden Bild sind 2 weitere (E & F) zu erkennen.

Der Strahlungsdruck hat regelrecht eine Höhle in den Nebel frei geblasen. Man sieht die Schockfront (S) links. Dabei wurde weiteres Gas destabilisiert was zu größeren dichteren Massenansammlungen führt. Die Vorstufen sind sogenannte Protoplanetare Scheiben (P) die man hier zahlreich sieht. Hier entstehen gerade neue Sterne und Planetensysteme.

Orion Nebel Zentrum

Hier das gesamte Feld

190118 Orion Neble / M42 Zentrum

Hier in Groß auf AstroBin

So viele Sterne man im Orion Nebel auch sehen mag, im Laufe der Zeit sind hier über 3000 Sterne entstanden. Die weitaus meisten sind hinter oder im Nebel versteckt, der aber das sichtbare Licht verschluckt.

Diese Sterne kann man aber im infraroten Licht sichtbar machen, ein paar selbst mit im kurzwelligen IR das CMOS Sensoren unsere Kameras auch zeigen, wenn man den Filter vor dem Sensor entfernt.

So habe ich einen Monat später (auch bei Vollmond, da kann man ja üblicherweise auch nichts ausrichten am stark aufgehellten Sternenhimmel) mal versucht, was meine Klarglasmodifizierte E-PL6 Kamera da sehen kann. Es wurde durch ein IR Filter belichtet, das nur Licht über 742nm durch lässt. Belichtet hatte ich bei F/4 30 Sekunden bei ISO1000.

190214 M42 Zentrum + IR Sterne

Hier in Groß auf AstroBin

In rot, die Sterne, die ich nur im IR Bild gefunden hatte.

 

Perigäum & Apogäum

Die Mondgrößen bei Perigäum & Apogäum

190914 & 180101 Mond am nächsten und fernsten (Perigäum & Apogäum)

 

Der Mond umkreist die Erde einmal in 27 Tagen und fast 8 Stunden.
Die Bahn ist ziemlich exzentrisch und so steht er dann dabei ca. einmal im Monat ganz nahe (=Perigäum) mit 356.410 km und im Apogäum (=am weitesten weit weg) 406.740 km weit weg.

Damit erscheint er uns in einer Größe von 29,4′ und 33,5′ Winkelminuten, also ca. 0,5 Grad (=30′)

Die Größe der Sonne schwankt hier nur zwischen 31,5′ bis 32,5 Winkelminuten. Daher gibt es ja totale (mehr oder weniger lange, je nach Mondgröße) und ringförmige Sonnenfinsternisse.

Der Unterschied zwischen dem kleinsten Vollmond (wie am 14.9.2019) und dem Größten (Super Super Vollmond) ist dann max. ca. 14% ** (so der Unterschied 1 Euro / 2 Euromünze)

** Genau zwischen 12,5%-14,1% wenn man die Daten zwischen den Jahren 1550 bis 2650 betrachtet.

Man braucht jetzt aber nicht die Panik haben, keinen Supervollmond in den nächsten 10 Jahren zu sehen. Der Unterschied zwischen sehr nahe und nicht ganz so sehr nahe, spielt sich in Hunderten km (so um die 200-400km) ab und ist daher kaum relevant für unsere Gerätschaften, fürs Auge sowieso.

So kommen wir im Durchschnitt alle 13,6 Monate zu einem Super-Mond und Super-Mini Mond 

Der nächste Super Super Vollmond ist gegen Weihnachten 2026 wer es sich anstreichen will….

Und dass sich der Mond pro Jahr um 3,8 cm von der Erde entfernt ist nur für die Relevant, die auf Totale Sonnenfinsternisse stehn und schon die Termine gebucht haben:
Sie können getrost alle Termine nach 550 Mio. Jahren streichen, denn dann geht sich eine totale Sonnenfinsternis nicht mehr aus, weil der Mond zu klein ist um die Sonne noch ganz bedecken zu können..

Hier habe ich mir jetzt das Bild des letzten Super Super Vollmond (1.1.2018) herausgesucht und in der selben Vergrößerung den letzten Super Super Mini-Mond (14.1.2019) hineinkopiert

 

 

Farben des Mondes

190217 Mond 95% - Mondfarben

Abseits der Farbverfälschungen durch unsere Erdatmosphäre, ist der Mond ja relativ weiß/grau. Zu kalt für stimmungsvolle Bilder mit Mondlicht.

Allerdings sind sehr wohl leichte Farbunterschiede am Mond nachweisbar, die man durch extrem starke Anhebung der Farbsättigung hervorzaubern kann.
Das klappt natürlich nur, wenn man vorher einen Farbstich vollständig beseitigt hat, sonst verstärkt man nur diesen Farbstich.

Die verschiedenen Farben kommt durch unterschiedliche Zusammensetzung der Mineralien zustande: Blau Farben kennzeichnen Bereiche mit Basalt mit höherem Anteil an Titan neben Eisen (>7%Ti >15%Fe). Besonders hoch im Meer der Ruhe (Mare Tranquillitatis), da wo der erste Mensch den Mond betrat.
Mehr rötlich deutet auf höhere Kalium und Natriumkonzentrationen im Feldspat hin. Weiße Bereiche zeigen die Hinterlassenschaften jüngerer Einschläge.

Auch wenn die Verbindungen dieser Elemente auf der Erde farblos oder weiß sind: Man darf nicht vergessen: Da oben, ohne den Schutz durch Magnetfelder und einer Atmosphäre prasselt stetig harte Strahlung auf die Oberfläche herab und erzeugt Stoffverbindungen, die bei uns so nicht stabil wären.

In Groß gibt es obiges Bild bei AstroBin

Frühlingssternhimmel: LEO-COM-UMa

190227 CMa COM LEO
190227 CMa COM LEO

Während die Wintersternbilder langsam im Westen verschwinden, steigt das Sternbild des Löwen (Leo) Anfang März an seinen höchsten Stand.

Auch der Große Wagen / Große Bärin steht dann in Opposition mit der Sonne. Hoch am Himmel bei dunkler Nacht kann man den ganzen Körper und Pfoten der Bärin sehen. (UMa)
Wer die Deichsel des großen Wagens geschwungen nach unten folgt wird beim sehr hellen Stern Arktur landen. Der Hauptstern des Sternbildes Bärenhüter (Bootes/Boo). Relativ zu den anderen Sternen der Milchstraße hat er eine hohe Geschwindigkeit, er dürfte also von außerhalb der Milchstraße aus einer Begleitgalaxie stammen und nur zum Besuch hier durchfliegen.
Er ist ein Riesenstern, der bereits Helium zu Kohlenstoff und Sauerstoff verbrennt.  Er ist der 3. hellste Stern am Sternenhimmel und auch das älteste, den wir mit eigenen Augen sehen können.

Wer dann weiter hinunter geht (hier nicht mehr im Bild) wird auf einen helleren Stern treffen: Spica im Sternbild der Jungfrau.

Zwischen Sternbild Löwe und und dem Arktur ist ein schwaches Sternbild: Coma Berenices – „Haar der Berenice“ (Com) In dunklen Nächten erkennt man den Coma Sternhaufen mit freiem Auge.
Die Freie Sicht abseits der Milchstraße macht einen ungetrübten Blick in die Tiefen des Weltraums möglich. So ist eine Galaxienansammlung von über 1000 in einer Entfernung von fat 500 Mio Lichtjahren unterhalb zu finden. Noch mehr Richtung Sternbild Jungfrau sind weitere Galaxien in dem 40-65 Mio LJ entfernten Virgo (Jungfrauen) Haufen zu finden.
Unsere eigene Galaxiengruppe gehört dem „Virgo Superhaufen“ an.

CVn – Canes Venatici, das Sternbild der Jagdhunde beherbergt u.a. die Sonnenblumengalaxie (M63) und die bekannte Strudel Galaxie M51
Den helleren Stern Cor Caroli kann man rechts der Deichsel finden auf den Weg zum Denebola, der den Schwanz des Löwen bildet.

Rund um die zwei Hauptsterne des Sternbild Jagdhunde:

200422 Sternbild Jagdhunde - Canes Venatici - CVn

in Groß auf Astrobin

Im unteren Teil,  1/3 auf dem Weg zum Arktur gehört noch der große Kugelsternhaufen M 3 dazu:

200403 M3

in Groß auf Astrobin

M51:

240411 M51 / Strudelgalaxie _FN_OM1_I1600_63x2m_RGB_driz1x_DCr_bXt_GC_IS_SPCC_bXt_DSnr_HTStr1ArcSin_mStr_bXt3_CT.jpg

Wintersternhimmel: GEM-CNC-LEO

190227 LEO - CNC - GEM
190227 LEO - CNC - GEM

Der Bereich links des Orion. Im Februar wandert der Orion schon Richtung Westen, Das Sternbild Krebs (Cnc, Cancer) ist in Opposition mit der Sonne.  Das Sternbild des Krebs ist recht unscheinbar, aber an einem dunkleren Himmel kann man den schönen Sternhaufen M44 erkennen. Auch unter dem Namen Praesepe (Krippe) oder (winterlicher) Bienenkorbhaufen bekannt.
Anfang März ist dann schon das große Sternbild des Löwe (Leo) in Opposition mit der Sonnen. Also der höchste Stand im Jahr und beste Sichbarkeit.

Links des Orion der helle einsame Stern ist Prokyon im Sternbild kleiner Hund (CMi) oberhalb die zwei bekannten hellen Sterne in den Zwillingen (Gemini/Gem) – Castor und Pollux. Hier findet man den hellen aber kleinen Eskimonebel.

27.7.2018 Totale Mondfinsternis

 

Die längste Mondfinsternis des 21. Jahrhunderts fand am 27.7.2018 statt. Das ganze garniert mit weiteren Attraktionen:
Der Mond erreichte auch gerade seinen weiteste Entfernung von der Erde, und es war somit der kleinste Vollmond im Jahr.
Der Mars war auch gerade in Opposition (5,9 Grad unterhalb des Mondes). Da er dieser Tage mit 57 Mio Km so nahe der Erde steht wie erst wieder 2035 war er sogar heller als Jupiter. Ein wunderbarer Anblick der zwei roten Himmelskörper:

180727 Mondfinsternis - Mars Opposition (5.9 °)

Die Beobachtung gestaltete sich als nicht ganz einfach, denn Anfangs sah es ganz so aus, dass das Wetter nicht mitspielte.

Etwas nach der Hälfte des Ereignisses gaben die Wolken die Sicht frei. Der tiefe Stand im Südosten machte die Sache nicht einfacher.

180727 Totale Mondfinsternis 2018

Epsilon Lyrae System

Daumenbreit (2 Grad) neben der Vega (Wega) findet man findet man ε – Lyrae. Die Vega ist der hellste Stern des Sommerdreiecks,  der im Sommer von Ost nach West hoch oben in Zenit nähe zieht.

160515 Leier - LYR anno.

Diese Sternsystem ist 160 LJ von uns weg, und besteht in sich aus Doppelsternen. Weitere Begleiter konnten mittlerweile auch nachgewiesen werden.

ε1 und ε2 Lyrae sind zwei 4,6 mag helle Sterne mit 3,5 Bogenminuten Abstand, das ist 1/10 der Größe des Mondes und Sonne am Himmel. Somit sind sie für schärfste Augen bereits visuell trennbar. Fotografisch sind sie sehr leicht zu trennen.

Ein schon größere Herausforderung allerdings ist es, die zwei Komponenten A/B und C/D aus denen ε1 und ε2 Lyr besteht auch noch aufzutrennen:

180520 E-Lyr

Der Abstand der Komponente ε1 A/B und ε2 C/D beträgt aber nur noch  2,3 bezw. 2,4 Bogensekunden.
In dieser Größenordnung liegt allerdings schon das normale schlechte Seeing  (Luftflimmern) meines Himmels. Nur in Ausnahmenächten wird mir unter 2 arcsec (Bogensekunden) angezeigt. Das beste Seeing von der Erdoberfläche aus wird bei ungefähr 0,7 – 1 Bogensekunde liegen. Durch Mitteln vieler Bilder kann aber die Auflösung erhöht werden.

Die Helligkeit der Sterne A, C und D ist mit um die mag 5-5,4 in etwa gleich groß, nur B ist mit mag 6 deutlich schwächer. Der Unterschied von einer mag stufe ist ja in etwas 2,5x weniger Licht.

Die Sterne A/B brauchen 1804 Jahre um sich zu umkreisen, C/D 724 Jahre.

1985 wurde bestätigt, dass ε ein Dreifachsystem ist. Allerdings nur Spektroskopisch, denn mit 0,2 arcsec Abstand ist er direkt visuell nicht sichtbar.

M27 – Hantelnebel

170714, 15 und 18.  M27 Hantelnebel

hohe Auflösung auf AstroBin

M27 ist bei uns einer der hellsten und relativ großen Planetarischen Nebel. Von der Größe ist er um 8 Bogenminuten groß. Der Mond hat 30 Winkel Minuten, unser Auge hat bei einer Winkelminute seine Auflösungsgrenze, Jupiter/Venus kommen fast in diesen Bereich.
Die Entfernung beträgt etwas über 1000 Lichjahre. Ein Stern hat am Ende seiner Lebensdauer einen großen Teil seiner Gashülle abgestoßen. Zurück blieb im Zentrum der mag+14 schwache weiße Zwerg, dessen Strahlung (er hat 100.000 Grad) das Gas zum Leuchten anregt: Wasserstoff rot (bei 656nm) und Sauerstoff bei 501nm in blau (O-III).

Man findet ihn im Sommer zwischen den Sternen Altair und Deneb unterhalb des Kopfsterns Albiro im Sternbild Schwan.

 

Filterexperimente am M27

M27, Hantelnebel wie in unserem Sprachraum genannt wird, ist eines der großen Objekte am Sommersternhimmel. Daher habe ich ihn für weitergehende Experimente herangezogen:
Zunächst mal möglichst viele Einzelbilder zu sammeln in unterschiedlichen Nächten und mit einer Modifizierten und Unmodifizierten Kamera. Außerdem was herauskommt, wenn ich das Castell UHC Filter verwende und bei hellerem Mondlicht die Bilder mache.

Hier mal das vorläufige Ergebnis:

Unmodifizierte Kamera (E-M10 MarkII)

170925 M27 - Hantelnebel

[FN, E-M10.II ISO800 16x4min] – hohe Auflösung auf AstroBin

Klarglasmodifizierte Kamera (E-PL6 + UVIRCut Filter)

170714, 15 und 18.  M27 Hantelnebel

[FN,E-PL6 78x4min ISO800] – hohe Auflösung auf AstroBin

Klarglasmodifizierte Kamera (E-PL6 + Castell UHC + UVIRCut Filter)

180928 - 30 M27 mit Castell UHC Filter

[FN, E-PL6mod ISO800 91x4min Castell UHC Filter+UVIR Cut] bei Halbmond+3 Tage – hohe Auflösung auf AstroBin

Beim ersten Bild mit einer „normalen“ unmodifizierten Kamera habe ich leider nur relativ wenige brauchbare Bilder erhalten (16×4 Minuten), aber letztlich war das Ergebnis gar nicht so schlecht. Auch die roten H-alpha Anteile werden durch den in den Olympus Kameras verbauten Filter nicht ganz blockiert und so kann man durch selektive Erhöhung der Farbsättigung doch einiges hervorholen.

Das zweite Bild war mit meiner klarglasmodifizierten Kamera. Hier konnte ich über 3 Nächte 78×4 Minuten Belichtung sammeln. Da jetzt auch alles an H-alpha (rotes Leuchten des Wasserstoffs) durchgelassen wird, ist hier mehr zu sehen.

Beim 3. Bild, dass sogar bei hellerem Mondlicht aber mit UHC-Filter gemacht wurde erreichte ich schon in Summe 5,1 Stunden Gesamtbelichtungszeit (91×4 Minuten). Durch diese langen Belichtungszeit, und das selektive Filtern auf das blaue Sauerstofflicht und rote Wasserstofflicht beginnen sich auch die schwächeren Ausläufer etwas abzuzeichnen. Das Bild ist zu meiner Überraschung auch relativ farbneutral geworden. Aber das schreibe ich meiner zwischenzeitlich schon besseren Kenntnisse der Bildbearbeitung in PixInsight zu.

Da andere Astrofotografen gerade auch erste Schritte in Richtung „Schmalbandfotografie“ machten, dachte ich mir: Es wäre praktisch, ein Filter zu haben, dass gleichzeitig nur H-alpha und O-III (Sauerstoff – blau) vereinigt. Dann könnte man das bei unsere „normalen“ Kameras beides gleichzeitig nutzen. Als ich mir die Filtercharakteristiken genauer ansah, fand ich heraus, dass genau mein Castell UHC Filter eine solche Charakteristik zeigte. Ich kaufte es ganz  Anfang meine Astrophotokarriere (wie es viele glauben, dass Filter eine schnelle Lösung bei Lichtverschmutzung bringen). Bei den ersten Versuchen am Lagunennebel und meinen bescheidenen Möglichkeiten in der Bildbearbeitung brachte ich natürlich kein farbneutrales Bild zustande (fehlte doch der grüne Lichtanteil), weshalb ich es fortan nicht mehr verwendete. Auch ist es ein typische Filter für visuelle Anwendung, bei aufgehellten Himmel, wo es an solchen Objekten den Kontrast (daher UHC -ultra hight contrast) erhöht und sie sich besser abheben. Gut: Visuell sieht man da ja meist sowieso enttäuschend wenig….auch das Visuelle beobachten will gelernt sein, schnell mal rein sehen ist da nicht, selbst wenn es eines der hellsten Objekte ist.

Transmissionkurve des Castell – UHC

Castell UHC

(1)
Unser sehen (und das der Fotoapparate) spielt sich im Frequenzbereich zwischen 400 – 650nm ab. Darüber hinaus sieht unser Auge schon etwas, aber halt nur wenig, und die Kameras habe einen Filter vor dem Sensor verbaut, der eher nur diesen Bereich durchlässt.

(2) + (5 + 6)
Das Leuchten der Gasnebel, allen voran das rot des angeregten Wasserstoffs (=H-alpha,  H-α Linie) ist bei 656nm zu finden. Also schon oberhalb des Bereiches, wo die Filter der Kameras mehr oder weniger stark sperren. Bei den Filter der Olympus Kamera zu 2/3.  Daher modifiziert man oft die Kameras, indem man diesen Filter ersetzt und so die Empfindlichkeit im Langwelligem Bereich zu erweitern.
Etwas über dem H-α (5) liegt dann noch S-II (Schwefel) (6).

(4)
Die Bande des angeregten (ionisierten) Sauerstoffs (O-III) liegt bei 501 nm liegt also im blauen sichtbaren Bereich.

(3)
Die (herkömmliche) Lichtverschmutzung liegt zum großen Teil in diesem Bereich: grün/orange der Quecksilber Hochdruck und Natrium Dampflampen. Die jetzt immer mehr einsetzten LED Beleuchtungen haben unterschiedliche Banden und es wird spannend wie es sich weiterentwickelt.

Noch etwas kann man der Durchlässigkeitskurve ansehen:
Für visuell Zwecke ist der Durchlass im IR unerheblich, aber an komplett offenen Kameras (wie meine klarglasmodifizierte Kamera) muss das ausgeblendet werden, weil Digitale Sensoren stark im Infraroten empfindlich sind. Ganz im Gegensatz zum Fotofilm, der besonders im UV Bereich empfindlich waren, deshalb die damals nötigen UV Filter (Skylight Filter), die den Violett stich am Himmel oder Schnee, vor allem in großen Höhen verhindern sollten, bei der jetzigen Digitalfotografie aber gänzlich unnötig sind.

Für die Beobachtung gibt es abgemilderte Formen als CLS, Neodym oder wie immer sie genannt werden. Sie lassen mehr Licht im grünen durch und versuchen speziell bei den Banden der Lichtverschmutzung zu schneiden. Da sie auch IR Durchlassen, gibt es davon auch spezielle mit dem Zusatz „CCD“.
Da sie mehr grünes Licht durchlassen, ist es da leichter einen stimmigen Weißabgleich zustande zu bringen.

Das bestechende am Castell UHC ist aber natürlich der relativ enge Bereich bei den wichtigen Emissionslinien der Gasnebel, sodass sie viel Störlicht, z.b. vom Mond auch elimieren. Dadurch kann man schon mal bei Mondlicht versuchen zu belichten.
Das ist der Vorteil der sogenannten Schmalbandfotografie. Hier macht man die Bilder dann durch entsprechende Filter, die nur mehr das Licht der bestimmten Gase durchlassen. Das sind dann die H-α, O-III, S-II oder exotischere wie H-ß etc.
Damit kann man dann wirklich bei hellem Mondlicht oder stark Lichtverschmutzen Bereichen ( z.b. Herwig – aus der Wiener Innenstadt heraus!) Fotografieren. Man kann mit einzelnen Banden auch seine normalen „RGB“ Bilder anreichern und so die schwachen Nebel besser zur Geltung zu bringen.

Mit Farbkameras hat man allerdings ein Problem: Es ist ja über den Sensoren (die ja an sich nur Helligkeitsempfindlich sind) Farbfilter angebracht.  Meist als „Bayer Matrix“ Und zwar jeweils Rot/Grün/Grün/Blau, aus denen dann das eigentliche Farbbild errechnet wird. Das bedeutet erstens einmal, dass ein 16 MPixel Sensor an sich nur wie eine Auflösung eines 4 MPixel Sensors entspricht. Bei der Belichtung mit einer bestimmten Lichtwellenlänge wie z.b bei O-III oder H-α wird dann von 4 Pixel auch nur eines beleuchtet. Bei O-III das blaue, bei H-α das Rote.
Deshalb erreicht man schwarz/weiß Kameras, wo über den Sensoren diese Farbfilterchen fehlen eine wesentlich bessere Auflösung. Hat allerdings dann den Nachteil, dass man dann für „normale“ Farbbilder mindestens 3 verschiedene Belichtungen braucht. Einmal eben für jeder der 3 Farben: Rot/Grün/Blau. Solange man die nicht hat, kann man kein echtes Farbbild zusammensetzen.