M2 / NGC 7089

151105 M2 -  NGC 7089 (Aqr)

2×4 min ISO400

Im Sternbild Wassermann (Aquarius / Aqr) findet man diese Kugelsternhaufen. Er ist an der Grenze der Sichtbarkeit mit dem freien Auge. Entdeckt wurde er 1746, William Herschel ist es 1794 erstmals gelungen das „nebelige etwas“ in einzelne Sterne aufzulösen.

Die scheinbare Helligkeit ist bei mag 6,5, die hellsten Einzelsterne sind bei mag 13.

Momentan ist er im inneren Halo der Milchstraße zu finden und ca 36.000 LJ weit weg, also weiter als unser galaktische Zentrum. Er hat aber die höchste Geschwindigkeit aller Kugelsternhaufen der Milchstraße und die Bahn führt ihn in weiteren Mrd Jahren bis zu 150.000 LJ hinaus ins äußere Halo der Galaxie.

Er ist wie praktisch alle Kugelsternhaufen mit 12 Mrd. Jahren sehr alt, und enthält auch kaum Metalle. Der Durchmesser ist rund 150 LJ.  Mit 100.000 Sternen ist er auch einer der sternreichsten Vertreter seiner Klasse.

 

Psc -Sternbild Fische / Pisces

An diesem Sternbild sieht man sehr deutlich: Viele Sternbilder im Tierkreiszeichen sind schlecht zu erkennen. Hier ein Weitwinkelbild (28mm KB) des an sich großen Sternbildes der Fische

151105 Sternbild Fische / Pisces - Psc

Hier die Auflösung inform der Astrometrierten Version:

151105 Sternbild Fische / Pisces - Psc

In Groß auf Astrometry.net

Rechts das Sternbild Wassermann (Aquarius/Aqr) links der Widder (Aries/Ari). Im Jahreszeitlichen Ablauf steht die Sonne im Februar im Wassermann, im März in den Fischen und dann folgen die im Sternbild Widder geborenen.
Beim Widder kann man wenigstens zwei helle Sterne leicht erkennen unter der Andromeda….

Zu den Sternen: Die hellsten Sterne beginnen bei mag 3,6 – also in der Stadt so gut wie nicht zu sehen. Der Rest hat mag 4,5 bis über mag 5, also an der Grenze der Sichtbarkeit bei gutem Seeing.

Neben einigen Doppelsternen und Veränderlichen gibt es nur ein Objekt aus dem Messierkatalog: M74 eine schöne, wenn auch schwache Spiralgalxie in ca 23 Mio Lj Entfernung.

 

UMa Großer Wagen / Bär

Der große Bär, eigentlich die große Bärin ist ein sehr großes Sternbild

190307 Großer Wagen / große Bärin - UMa

Wer sich nur ein wenig auskennt am Sternhimmel, der kennt aber den auffälligsten Teil des Sternbilds, denr große Wagen:

190307 Großer Wagen / große Bärin - UMa

(in Groß auf AstroBin)

Auf unseren Breiten und natürlich höher im Norden ist das Sternbild zirkumpolar, es ist also das ganze Jahr hindurch zu sehen, wie es um den Nordpol wandert.

Der 2 Stern in der Deichsel des großen Wagens ist ein visueller Dopplestern Mizar und Alcor (das Reiterchen). Wer gute Augen hat, kann dieses Pärchen trennen, weshalb es schon im Arabischen Raum für Augentests bekannt war. In Wirklichkeit dürften es nur zufällig eng stehende Sterne sein. Mizar allerdings ist ein echter Doppelstern, den man mit einem kleinen Teleskop trennen kann:

Mizar und Alcor

M101 – Feuerradgalaxie

190406 Feuerrad Galaxie - M101

Von uns aus gesehen die 3. größte Galaxie, nach Andromeda (M31) und Dreiecksgalaxie (M33). Eine der wenigen wo man auch schön von oben auf die Spiralarme drauf sieht. Mit einer scheinbaren Helligkeit von 7,5 mag kann man sie im Fernglas sehen. Sie ist von uns 22 Millionen Lichtjahre weit weg und übertrifft sie mit einem Durchmesser von  170.000 Lj. die Andromeda Galaxie bei weitem.

Wenn man den Hinteren Teil des Wagenkastens Richtung Polarstern geht, der ja 5x dem Abstand der hinteren Sterne entspricht, kommt man am halben Weg zu Bodes Galaxien – M81 und M82. Sie sind zu unserem lokalen Haufen (wo unsere Michstraße, Andromeda und Dreiecksgalaxie gehören) die nächsten Galaxien und 11,5 und 11,8 Mio LJ weit weg.

190322 M81 & M82 Bodes Galxien

im weiten Feld mit IFN :

190330 Bodes Galaxien M81 & M82

Eine der selteneren Polarring Galaxien, NGC3718 kann man auch im Sternbild finden:

190406 NGC3718 (r) NGC3729 (l) Hickson 56

UMi kleiner Wagen Kleiner Bär

150226 UMi
150226 UMi - Astrometriert

Wie man auf dem Bild sieht, besteht der kleine Wagen aus helleren und dunkleren Sternen. Da diese aber in der Helligkeit stark unterschiedlich sein, kann man an im auch die Güte des Himmels (=Seeing) ablesen. Polaris hat eine Helligkeit von mag 2. Im Kasten der hellste Stern hat auch mag 2,1, der darunter mag 3,0. Die restlichen Sterne der Deichsel des kleine Wagen haben mag 4,2-4,4. Der schwächste Stern des Kastens, schräg gegenüber des hellen Kochab, hat nur mag 4,9 also fast 5, gleich darüber ist ein Sternchen mit 5.5!. Wenn man den sehen kann, hat man schon eine recht dunklen Himmel. Unsere angepassten Augen sehen Objekte von ca mag 5,5-6,5. Letzteres in Europa wohl kaum mehr.

Alleine die Straßenbeleuchtung senkt die Sichtbarkeitsgrenze um 3 mag, die Lichtglocke über der Stadt natürlich weiter. Das hat aber gerade für den Anfänger einen Vorteil: Er sieht nur die hellsten Sterne und findet sich leichter zurecht. Auch bei etwas länger belichteten Fotos gehen meist die hellen Sterne in einem Meer von Lichtpunkten der schwächeren Sterne unter. Deshalb habe ich obiges Fotos durch ein Weichzeichenfilter gemacht. Helle Sterne zeigen dann eine größere Fläche, auch bei längerer Belichtung.
Ein normales Fernglas (7×50) steigert die Grenzgröße um ca +4mag. Dann kann man Sterne und Objekte noch bis ca. 9-10mag erkennen. Man sagt „ab 200mm öffnet den Himmel“. So steigt die visuelle Grenzgröße auf 13 mag. Der Zentralstern im bekannten Ringnebel der Leier mit mag 14,7 ist aber nur noch fotografisch mit längerem Lichtsammeln abzubilden.

Polaris, der Polarstern liegt nicht genau im Norden, sondern etwas daneben auf der gedachten Linie Richtung Kochab. Er umkreist den Himmelsnordpol im Laufe der Nacht. Wird die Achse der Teleskopmontierung  genau auf den Himmelsnordpol ausgerichtet (=einnorden). Dann reicht es, wenn ein Motor genau diese Achse bewegt. Wer das genau trifft und wenn der Motor präzise arbeitet, wird das Fernrohr oder Fotoapparat immer genau mit dem Stern nachgeführt. So gelingen dann Langzeitbelichtungen. Wenn das weniger gut läuft, belichtet man entweder kürzer und öfter, oder man benützt einen Guider, der anhand eines Leitsterns die Nachführung korrigiert. Dazu verwende ich den MGen von Lacerta (Teleskop Austria)

An lohnenswerten Objekten gibt es im Kleinen Wagen zumindest in unmittelbarer Nähe des Polarsterns nicht viele allgemein bekannte Objekte. Wir sehen hier weitab unserer Milchstraße in die Tiefen des Universums. Wer aber sehr lange belichtet (mehr als 10 Stunden!), wird aber selbst hier Molekülwolken, wie sie überall vorkommen, finden können. Solches herauszuholen ist aber eine hohe Kunst, meist reicht die Tiefe (sehr lange belichtet) der Astrofotos nicht, und oft werden die schwachen Staubbänder beim Versuch den Hintergrund zu glätten gleich mit entfernt.

Hier UMi  um einiges tiefer belichtet

180408 Kleiner Wagen / Bär - UMi

[Olympus E-M10.II, 25mm (50mm KB), ISO800 F2,5 44x1min]

Bei obigen Foto sieht man beim Polarstern den „Verlobungsring“ mit Polaris als „Diamant“ ein Asterismus. Das ist eine zufällig Anordnung von Sternen, die für uns einen Sinn ergeben. Die meisten Sternbilder sind das auch, denn die Sterne gehören nicht immer zusammen oder stehen in der selben Entfernung und haben gleiche Vorgeschichten. Die Sterne in diesem „Engagement Ring“ haben eine Helligkeit von 8-9 mag, also eher nur mit einem größeren lichtstärkeren Fernrohr zu sehen.

Wer mal auf den Polarstern (Polaris) kurz belichtet (0,1-10 sek – je nach Gerät) wird sehen, dass er ein visueller Doppelstern ist. Polaris ist mit mag 2 recht hell, der Begleiter hat nur mag 9.0 und steht mit 18 Bogensekunden (arcsec) recht nahe. Belichtet man zu lange, wird er vom viel helleren Stern überstrahlt:

18.8.2014 Polaris

FN200/800 ISO200 10sec Olympus E-M1

Die Hauptkomponente Polaris ist aber auch ein spektroskopischer Doppelstern, das lässt sich aber nur durch aufwendige Messungen nachweisen. Polaris ist also ein dreifach Sternsystem.  Von der Größe her ist Polaris ein Überriese, mit 100 Sonnendurchmesser und strahlt 5000 mal heller als unsere Sonne. Von uns ist er  431,42 Lichtjahre weit weg. Polaris schwankt auch ganz leicht in der Helligkeit (0.01mag) alle 4 Tage, außerdem pulsiert er leicht, allerdings seit einigen Jahrzehnten immer weniger.

Durch diese Gegend ziehen sich große Staubwolken. Bekannt als Polaris Nebel oder (Nördliche) Polar Spur (NPS). Sie ist ein Beispiel für IFN (Integrated Flux Nebula). Solche Nebel liegt in den äußeren Regionen unserer Galaxie und besteht aus feinen Staubpartikeln, die durch das reflektierte Licht der gesamten Milchstraße beleuchtet werden. Sie heben sich sehr schwach vom dunklen Hintergrund ab, weshalb sie relativ schwierig herauszuarbeiten sind.

190406 Kleiner Wagen - Nord Polar Spur

[E-M10.II, mFT25/1.8 95x1min]

Großer Bär und Kleiner Bär

Das wohl bekannteste Sternbild ist bei uns wohl der große Wagen. Er ist ja zirkumpolar, was bedeutet, daß man ihn das ganze Jahr über sehen kann, wie er den Polarstern (Nordstern) umrundet.

Genau genommen ist aber der große Wagen nur ein Teil des Großen Bären, der eigentlich Große Bärin heißt (UMa – Ursa Major).  Von ihm aus findet man jedenfalls recht einfach den Norden mit seinem Polarstern (Polaris). Der steht zwar nicht ganz exakt im Norden, aber sehr nahe. Hat man Polaris gefunden, kann man auch UMi (Ursa Minor) oder eben den kleine Wagen finden:

Hier auf diesem extremeren Weitwinkelbild (28mm KB-Brennweite) sieht man die zwei Sternbilder, vor allem aber die große Ausdehnung des UMa:

UMa / UMi - Großer Bär und kleiner Waagen

Wenn man das obige Bild etwas in Erinnerung hat, ist es dann schon einiges leichter, sich zurechtzufinden:

UMa / UMi - Großer Bär und kleiner Waagen

Die sehr hellen Sterne des großen Wagen fallen ja leicht auf. Die Deichsel des Waagen bilden den Schwanz der großen Bärin. Vom hinteren Kasten des Großen Waagen ausgehend braucht man nur 5x den Abstand der hinteren Sterne verlängern und man kommt auf den hellen Polarstern.

UMa / UMi - Großer Bär und kleiner Waagen

Weiters eingezeichnet die Helligkeit im mag, wo man abschätzen kann, wie gut der Himmel gerade ist.

Weitere Beiträge hier:
UMa – Großer Wagen – große Bärin
UMi – Kleiner Wagen / Bär

 

Beobachtungsnacht 12.11.2015

Eine relativ sternklare Nacht lies mich wieder probieren. Da im Süden Wolken waren und so ein Blick  versperrte versuchte ich mich zunächst am M34 – ein offener Sternhaufen zwischen Perseus und Andromeda. Zusätzlich montierte ich noch einen Fotoapparat mit dem „alten“ ED50200.

Die Montierung richte ich zunächst an der sehr hellen Auriga im Fuhrmann aus, was es mir ermöglichte, das Teleobjektiv scharf zu stellen. Am Teleskop selbst mit Bahtinov Maske gibt es ja da keine Probleme. Ein letztes Allignment dann am Almach und schon lies ich M34 anfahren. Es passte gleich recht gut.

Das Tele richtete ich gegen Andromeda. Im Liveview konnte ich da sogar Sterne sehen!. Nach einer kurzen Probebelichtung mit sehr hoher ISO rückte ich dann noch das Bild zurecht. Dann war alles bereit für Belichtungsserien von je 4 Minuten. Der MGen Autoguider sorgte für eine exakte Nachführung und das Dithering. So nennt man das Versetzen der Aufnahme am Chip, wodurch weiteres Sensorrauschen und Sensorfehler besser ausgeglichen werden können.

Mein DualsetupSetup

Nach einer Stunde war aber dann mal Schluss, denn am Teleobjektiv begann sich Tau abzusetzten. Das Sucherfernrohr für den Autoguider war bereits stark beschlagen, allerdings war der ausgewählte Stern noch so gut zu sehen, dass es zu keinem Sternverlust kam.

Dann machte ich mal Dunkelbilder für die Korrektur der Sensorfehlpixel, indem ich das Objektiv abdeckte. Nach einigen Dunkelbilder stellte ich die Kameras auf Automatik und die Belichtungskorrektur noch auf +1 Blende. Mit der LED Flatfieldbox machte ich dann die Flats. Mit der kürzesten Belichtungszeit im Dunkeln die Bias Bilder, auch wenn das Bias bereits im Dunkelbild enthalten ist, geht ja schnell.

Ich beschloss dann mal zu versuchen, dem Beschlagen mit einem Föhn beizukommen. Als weitere Versuchsobjekte dienten dann mit dem Tele M42, der Orionnebel und am Teleskop M1, der berühmte Krebsnebel. Beide stiegen schon im Südosten hoch, und die sehr störende Kirchenbeleuchtung wird ja erst Samstag und Sonntag eingeschaltet.

Hier das erste Bild, ein Foto mit dem „alten“ ED50200 bei 200mm (=400mm KB Brennweite) bei Offenblende von F3,5 bei ISO1600 und 13×4 Minuten an der E-PL7

151112 M31 - Andromeda Galaxie

28.9.2015 Totale Mondfinsternis

In der Nacht von Sonntag auf Montag fand eine denkwürdige Mondfinsternis statt. Aufgrund der sich spät auflösenden Wolken fast ohne mich. Kurz vor der Totalität gab es größere Wolkenlücken, sodass ich zumindest den „Blutmond“ selbst mal abbilden konnte:

150928 Totale Mondfinsternis 28.9.2015

(Bild in Originalauflösung)

Ein Vollmond im September wird als Erntemond bezeichnet. Erntemond deshalb, weil er in alten Zeiten, wo noch kein künstliches Licht bei der Feldarbeit möglich war, er genügend Licht spendetet um auch Nachts mit der Ernte voranzukommen.

Er war noch dazu ein „Supermond“.  So nennt man einen Vollmond, wenn die Mondbahn genau zu Vollmond der Erde am nächsten kommt. Genau das war um 4:11 morgens, genau mit dem Eintritt des Mondes in den Kernschattens der Erde. Das Streulicht der Erdatmosphäre färbt ihn dabei dunkelrot. Da er so nahe war, dauerte diese Totalitäsphase mit etwas über 1 Stunde und 12 Minuten auch extrem lang.

Eine Mondfinsternis ist an sich nicht gar so selten, aber die nächste Mondfinsternis mit ähnlicher Qualität wir erst am 8.10.2033 stattfinden.

Beobachtungsnacht 29.8.2015

Tags zuvor habe ich nochmals eine Lösung versucht, Mondbilder aus der Digitalkamera zu stacken. Danke einer Webseite ist mir das scheinbar mit Fitsworks gelungen. Sterne zu stacken ist ja nicht das Problem, denn da gibt es einiges an Software, hoch aufgelöste Bilder aus der Digitalkamera aber überfordern die auf kleine Bilder aus Webcams für Planeten und Mond Detailaufnamen ausgelegten Programme. Das motivierte mich natürlich dazu es am großen Vollmond zu versuchen. Der Vollmond fand  um 20:36 statt. Günstiger Weise wäre er mit 358.993 km auch recht nahe der Erde, erst morgen am 30.8. wird er mit 358.282 km seine größte Erdnähe erreicht haben.

Der Mond wird um Mitternacht dann mit 30 Grad über Horizont seinen höchsten Stand erreicht haben (Meridiandurchgang – seinen Höchststand über Horizont), was zumindest die dünnst mögliche Luftschichte zwischen Objekt und Teleskop bringt. Auf der Sternkarte im Stellarium sehen ich noch, das Uranus auch zu sehen wäre und mit einer scheinbaren Helligkeit von mag 5-6 wohl auch bei Vollmond sichtbar sein sollte. Ich suche mir Hamal als Stern aus, um ein möglichst nahes Allignment zu machen. Ein paar Bilder bei ISO200 und zwischen 0,5 und 15 Sekunden sollten reichen, um ihn eindeutig zu identifizieren. Inzwischen geht es gegen Mitternacht und ich mache je 60 Bilder am Vollmond einmal „Normal“ und einmal mit dem EC14, einem 1,4x Telekonverter, der in meiner Konfiguration den Mond nahezu formatfüllend zeigt.

Hier mal ein Bild des Vollmondes in Originalauflösung 42 von 60 Bildern gestackt. Aber leider ist die Auflösung nicht wirklich gut, da habe ich schon wesentlich besser aufgelöste Einzelbilder des Mondes. Da war offenbar die heiße Luft zu unruhig.

Dann schwenke ich nochmals zum Uranus, diesmal mit der Barlow 2,67 (2,67x APM Komakorrigierende Barlowlinse von Gerd Düring). Damit ich überhaut was sehe am Liveview geht ich erneut zu Hamal. Die Schärfe wird auch noch schnell mit der Bahtinovmaske überprüft. Per GoTo lasse ich das Teleskop erneut auf Uranus schwenken. Dann mach eich wiederum ein paar Bilder.

Zum Abschluss gehe ich mal auf Almach, der schöne Doppelstern in der Andromeda. Wieder erwarten war das Luftflimmern nach Mitternacht doch nicht ganz so groß wie befürchtet. Im Liveview mit Bahtinovmaske kann man seinen mit 10 Bogensekunden recht nahen Begleiter sehr deutlich getrennt sehen und ich mach noch ein Bild mit der Maske.

Nach ein paar Bildern von Almach mit verschiedenen Belichtungszeiten schließe ich den Beobachtungsabend ab.

 

 

Astrofotografie mit Olympus Digitalkameras

Mittlerweile gibt es natürlich immer mehr, die Olmypus auch für Astrofotos verwenden. Nach jetzt 2 Jahren habe ich den einfachen und praktikabelsten Weg zur Adaption gefunden:

Einfach einen 2″ (= 2 Zoll Standard für ernsthafte Fotografie!) auf mFT Adapter nehmen. Wer ein Komakorrektor oder Flattener mit üblichen 48mm Anschluss hat, nimmt einen M48->2″ Adapter.
Für die APM 2,7x Barlow braucht man ein 50mm 2″ Verlängerungsrohr um in den Fokus zu kommen. Und dann halt wieder auf den mFT 2″ Adapter an die Kamera. Aber behaltet im Hinterkopf – Telekonverter (= Barlow in der Astrofotografie) kosten naturgemäß viel Licht: 1,4x 1 Blende, 2x 2 Blenden….

Zu Beginn musste ich mal herausfinden, was man wie kombinieren kann – siehe Text weiter unten. Außer als Spielerei am Planeten würde ich Okularprojektion vergessen…. Und anstatt dem MMF3 Adapter auf 2″ halt den mFT/2″ Adapter verwenden. Der Funktioniert auch mit (zumindest meinem) MC14. Wer den EC14 Adapter hat, braucht dann natürlich einen MMF auf mFT Adapter.
Als Tipp: bei 800mm Brennweite + 1,4x Telekonverter ist der Mond und Sonne nahezu Formatfüllend. Daher: Kauft keine zu lange Brennweite! Lichtstärke für kurze Belichtungszeit zählt mehr als etwas länger und bezahl-/händelbarer mehr Brennweite bei geringerer Lichtstärke!

—–  August 2015 ——-
All zu viele Olympus User dürfte es bei der Astrofotografie nicht geben. Als passionierter Olympus Fotofreund bleibe ich natürlich auch bei der Astrofotografie treu, da ich mit den OM-D Kameras über hervorragende und leichte Gehäuse verfüge.

Hier stelle ich mal die Adaption der Olympus FT Kameras vor:

Adaption Astrofotografie

Nach einigem herumprobieren habe ich jetzt zwei Hauptadaptionen gefunden, die mir qualitativ am besten zusagen:

Adaption am Teleskop

Für verzerrungsfreie Bilder ist bei solch lichtstarken Newton Teleskopen ein Flattener (Komakorrektor) erforderlich. Ansonsten würden am Bildrand die Sterne Tropfenförmig verzerrt. In meinem Fall hat der Ausgang des  Komakorrektors ein M48 Gewinde. Teleskop-Austria.at hat mir den FT-Adapter auf dieses M48 Gewinde angepasst. Daran kann ich direkt die Kamera an den FT/mFT anschließen.
Da die Sterne in den Ecken nicht rund waren, wurde noch ein 2mm Abstandsring zwischen Komakorrektor und Adapter probiert. Jetzt sind sie bis in die Ecken fast rund. Fast perfekt dürfte der Abstand aber sein, wenn man einfach einen M48 auf 2″ Adapter nimmt. Dann die Kamera einfach mit einen handelsüblichen FT/2″ Adapter anschrauben.

Wie ich noch einen Filter dazwischen bekomme hat sich mittlerweile auch geklärt: Im Flattener (Comakorrektor) bez. bei den gute Adaptern kann man die Filter einfach einschrauben 🙂

Adaption an KomaKorrektor

Da ich noch einen EC-14 (Olympus FT 1,4x Telekonverter) habe, nehme ich den gerne bei Sonnen oder Mondfotografie. Damit ist bei einem Teleskop mit 800mm Brennweite der Mond oder Sonne (0,5 Grad Winkelausdehnung) fast formatfüllend:

160507 E-M5 mit EC14

Also: Teleskop – Comakorrektor – M48/2″ Adapterring – 2″ Adapter – EC-14 – FT/mFT Adapter und mFT Kamera.

Adaption mit Baader Barlow 2,25 am Teleskop

Die Baader Barlow für Hyperion Zoom Okular, mit 2,25 stellt das dar, was ein Telekonverter bei Fotooptiken ist: Er vergrößert das Bild. Der Komakorrektor ist dann nicht mehr notwendig. Daher braucht man einen T2/FT Adapter und eine Adapter der dann das ganze mit dem Teleskoptubus verbindet. 1,15″ Filter kann man dann direkt an der Barlow Linse einschrauben.

Adaption mit Barlow
barlow_om-d

Adaption mit APM Barlow 2,67x am Teleskop

Sie ist relativ einfach: Der enthaltene APM Adapter (für das Einstecken eines normalen 31,4mm Objektives) hat ein 2″ Gewinde. Das ganze einfach mit dem 2″ Adapter auf FT oder mFT Adapter. Zur stärkeren Vergrößerung kann man noch ein 2″ Extender Rohr dazwischen geben.

Natürlich kosteten solche Vergrößerungsmaßstäbe jede Menge an Licht und man stößt schnell an die Grenzen des Sinnvollen bei Digitalkameras. Das Vierfach Sternsystem wie ε-Lyrae kann man aber schön trennen. Die zwei Komponenten der beiden Doppelsterne sind nur 2,3 bzw. 2,7 Winkelsekunden entfernt.

Bei hohen Vergrößerungen kann man natürlich auf den Comakorrektor verzichten. Wenn man aber einfach von norma (mit Comakorrektor uaf ohne Komakorrektor) umrüsten will, sollte man den Newton neu justieren. Wenn es also schnell gehen soll, dann kommt der M48 1,25″ Adapter an den Komakorrektor. Da steckt dann die APM Barlow drinnen. Die APM Barlow ist wir üblich mit 2″ Abstandsrohr und einem 2″ / FT oder mFT Adapter an der Kamera:

160509 EM5 + APM Barlow am Comakorrektor
Okularprojektion durch Hyperion Zoom Okular

Man kann mittels optionalen Adapters vom Hyperion Zoom Okular auf T2 die Kamera direkt ans Okular anschließen. Leider ist dann die Bildqualität nicht mehr wirklich hoch: Z.b. beim hellen Rand des Mondes deutliche Halos. Bei der Fotografie der Sonne sieht man jede Menge Staub. Auf die schnelle bin ich nicht dahinter gekommen auf welchem der vielen Linsenflächen dieser Staub liegt, aber alles durch putzen  hilft.

Okularprojektion

Aus der Fotografie weiß ich aber, dass jeder zusätzliche Linse Qualitätsverluste verursacht. Bei den Vergrößerungen die das 8-14mm  Zoom anbietet kommt man nicht wirklich auf höhere Vergrößerungen als eine Adaption Barlow+Kamera bietet. Zumindest im Sommer ist das Seeing so schlecht, dass es wohl keine zusätzlichen Vorteile bietet. Ob ein Einsatz der klassischen Okularprojektion (Teleskop  + Barlow + Okular + Kamera) bei guten Bedingungen sinnvoll ist, wird sich noch herausstellen. Ebenso inwieweit die afokale Projektionsphotographie (Teleskop + Okular + Kameraobjektiv + Kamera) etwas bringt, ebenso.

Barlow + Okularprojektion

Okularprojektion bringt mM nach zu starken Qualitätsverlust. Mit einer guten Barlow geht es besser.